Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: Sixteen cases of CJD declared a few days after a COVID-19 “vaccine” Jab
Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: Sixteen cases of CJD declared a few days after a COVID-19 “vaccine” Jab

Jean Claude Perez, PhD Maths§Computer Science Bordeaux University; Retired (IBM European Research center on Artificial Intelligence Montpellier France); Bordeaux metropole France; https://orcid.org/0000-0001-6446-2042 France
JeanClaudePerez2@gmail.com
Claire Moret-Chalmin, MD. Neurologist, 13 rue Roger Martin du Gard 60600 Clermont France clmoret@gmail.com
Luc Montagnier MD. Virologist, Fondation Luc Montagnier Quai Gustave-Ador 62 1207 Genève, Switzerland

KEYWORDS
Creutzfeldt-Jakob disease (CJD), Prion protein, SARS-CoV2 Variants, Spike, COVID-19 mRNA Vaccines, survival, Neuropsychiatric disease, Evolution.

ABSTRACT

We highlight the presence of a Prion region in the different Spike proteins of the original SARS-CoV2 virus as well as of all its successive variants but also of all the “vaccines” built on this same sequence of the Spike SARS-CoV2 from Wuhan.

Paradoxically, with a density of mutations 8 times greater than that of the rest of the spike, the possible harmfulness of this Prion region disappears completely in the Omicron variant. We analyze and explain the reasons for this disappearance of the Prion region of the Spike of Omicron.

At the same time, we are analyzing the concomitance of cases, which occurred in various European countries, between the first doses of Pfizer or Moderna mRNA vaccine and the sudden and rapid onset of the first symptoms of Creutzfeldt-Jakob disease, which usually requires several years before observing its first symptoms.

We are studying 16 Creutzfeldt Jakob Diseases, in 2021, from an anamnestic point of view, centered on the chronological aspect of the evolution of this new prion disease, without being able to have an explanation of the etiopathogenetic aspect of this new entity. We subsequently recall the usual history of this dreadfull subacute disease, and compare it with this new, extremely acute, prion disease, following closely vaccinations. In a few weeks, more 40 cases of almost spontaneous emergence of Creutzfeldt-Jakob disease have appeared in France and Europe very soon after the injection of the first or second dose of Pfizer, Moderna or AstraZeneka vaccines. We report here 16 cases from France, Belgium, Switzerland
and Israel. We can place special emphasis on the remarkably very similar timing of the clinical semeiology. Indeed, of the 16 cases studied here, the first symptoms appeared on average 11.06 days after the injection (with a dispersion ranging from a minimum of 1 day to a maximum of 30 days.

We suggest the reasons for thinking that we are dealing here with an entirely new form of Creutzfeldt-Jakob disease.

CONTENTS

I-INTRODUCTION

II-METHODS

2.1- PLAAC analysis

2.2- Master Code analysis

III-RESULTS and DISCUSSION

3.1- Different research for Prions in representative species: PRNP in humans, cows (mad cow disease) and sheep as well as Prion TDP-43.

3.2 – How the Prion function present in the Spike proteins of strains, variants or vaccines, all based on the Wuhan parent strain, disappears in the Omicron variant

3.3 - Possible Prion functions in 25 Spike proteins from SARS-CoV2 strains, variants or “vaccines” representative of the evolution of the SARS-CoV2 virus pandemic.

3.4- SIXTEEN (16) cases of French patients for whom the Creutzfeldt-Jakob symptoms appeared within a very short time after Pfizer, Moderna or AstraZeneca injections.

IV-CONCLUSIONS

I- INTRODUCTION

Prions are self-templating protein aggregates that stably perpetuate distinct biological states (Lancaster et al, 2014). In (Prusiner S, 1997) there was a good definition of Prion basic research breakthrought:

«Creutzfeldt-Jakob disease and related illnesses affecting people and animals involve the degeneration of brain cells. In 1982 Stanley Prusiner was able to isolate a suspected infectious agent, a protein that he called a prion. He identified the gene behind the prion protein, but determined that it is also present in healthy people and animals. Stanley Prusiner showed that the prion molecules are folded in a different way than the normal proteins and that the folding of the prion can be transferred to normal proteins. This is the basis for the illness».

Finally, to resume, Prions are proteins that can switch from non-aggregated states to self-templating highly ordered aggregates. This property allows them to confer stable changes in biological states.

In (Tetz§Tetz, 2022), (Seneff&Nigh, 2021) and (Classen, 2021), it has been demonstrated, or at least suggested, the presence of a Prion region in all Spike proteins of SARS-CoV2 viruses.

In (Seneff&Nigh, 2021), Dr. Stephanie Seneff, who works in the Computer Science and
Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT), along with colleague Greg Nigh from Naturopathic Oncology in Portland, Ore., identified a “GxxxG signature motif” within the injections that they say increases the risk that misfolding will occur, creating toxic oligomers. They call this the “glycine zipper motif”, characterized by a pattern of two glycine residues spaced by three intervening amino acids, represented as GxxxG. Particularly, the bovine prion linked to MADCOW has, also, a spectacular sequence of ten GxxxGs in a row … Similarly, the SARS-CoV2 spike transmembrane protein contains five GxxxG motifs in its sequence. Then, it becomes extremely plausible that it could behave as a prion.

This presence of Prion region has been formally demonstrated, (Tetz§Tetz, 2022) but does it actually produce a possible behavior in "Prion Function" of these Spikes? The answer seems to be "Yes" (Kuvandyk A, 2021), (Idrees D, 2021) and (Young M, 2020). Indeed - and this will be the subject of this article – in a few weeks, more 40 cases of almost spontaneous emergence of Creutzfeldt-Jakob disease have appeared in France very soon after the injection of the first or second dose of Pfizer vaccines or Moderna. Usually this disease takes decades to manifest itself. Why and how can this same fatal disease declare itself so quickly following these injections? It is very likely that we are dealing here with a new form of Creutzfeldt-Jakob disease.

II- METHODS

We will use 2 complementary methods of prion analysis:
- The first is the PLAAC software (Lancaster et al, 2014) which makes it possible to detect, from an amino acid sequence, regions likely to develop a prion function.
- The second is the “Master Code of DNA” (Perez, 2009), (Perez, 2015) and (Perez§Montagnier, 2021) making it possible to confirm or reinforce the hypothesis of a possible prion function by highlighting certain structures or patterns of the curves of the Master Code unifying the Genomics and Proteomics signatures of the sequence considered.

2.1- PLAAC analysis:

We illustrate the method here using the example of the SUP35 Prion from the yeast.

Saccharomyces cerevisiae S288C translation termination factor GTPase eRF3 (SUP35), partial mRNA

NCBI Reference Sequence: NM_001180479.3

In Figure 1 above we analyze the Sup35 yeast prion (Kushnirov V, 2000) using the PLAAC software.

The PLAAC software detects a Prion region which would be located in the first 120 amino acids of the SUP35 protein. This is confirmed by the red curve at the top of the image, as well as by the red curve and the gray part of the curves at the bottom of the image (see Legends Figure 2 and Table 1 below).

Table 1 – PLAAC conventions and explanations.

<table>
<thead>
<tr>
<th>LEGEND PLAAC results</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Top two curves</strong></td>
</tr>
<tr>
<td>are complementary curves resulting from Markov chain process (Markov A.A, 1971)</td>
</tr>
<tr>
<td><strong>Background</strong></td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td><strong>PrD like</strong></td>
</tr>
<tr>
<td>Red</td>
</tr>
<tr>
<td><strong>Bottom three curves</strong></td>
</tr>
<tr>
<td>Fold index gray (entropy like indicator). Low (negative) if possible Prion function</td>
</tr>
</tbody>
</table>

![Figure 1 - Visualization outputs from PLAAC. Top: four known yeast prion proteins with each amino acid color-coded by its enrichment log-likelihood ratio in PrLDs (styled after the Sequence Enrichment Visualization Tool; http://jura.wi.mit.edu/cgi-bin/bio/draw_enrichment.pl), with HMM parse indicated by outer bars. Bottom: detailed visualization of the Yeast Sup35 protein, including several prion-prediction scores. source (Lancaster et al, 2014).](image)
PLAAC    Red    ------  Low (negative) if possible Prion function
PAPA     Green  second complementary method. High if states transitions

Figure 2 – PLAAC colors conventions and explanations.

2.2- Master Code analysis:

The so-called "Master Code" method (Perez, 2009), (Perez, 2015) and (Perez§Montagnier, 2021) allows, from the only atomic masses common to DNA, RNA and amino acids numerical values, to highlight a kind of META-CODE which would unify the 3 codes of DNA, RNA and amino acid sequences. Particularly, the Master code curves measure the level of coupling or correlation unifying the 2 Genomics (DNA) and Proteomics (amino acids) expressions for any sequence, coding for a protein, or not.

In (Perez, 2017a) we analyzed all types of Prions in the early 2000s mad cow disease (plants, yeast, humans, cows, sheep, etc.). We had then highlighted a kind of "signature" or invariant which would be common to all Prions: a typical signature of the Master code taking the characteristic form of a "W" (or even by symmetry of an "M"). We had extended this type of analysis to amyloid implicated in Alzheimer's disease (Perez, 2017b).
Figure 3 – "W" structure, kind of IN Variant COMMON to all Prions (here the case of the human PRNP Prion).
It is through the joint and complementary use of the Prions PLAAC research software, on the one hand, and of the "Master code", on the other hand, that we will succeed in this article in detecting and then confirming the possible presence, even probable, of a Prion function. Thus, the first PLAAC method "proposes" a probable Prion function.

The second method of the "Master Code", on the one hand, "confirms" the structure in "W" or, symmetrically, in "M" for the regions proposed by PLAAC, then, on the other hand, we observe that these regions Prion from PLAAC are always confirmed by "continuously decreasing" on the "Master code" curves (see exemple Figure 6).

III- RESULTS and DISCUSSION

First, we present different studies of Prions in representative species: man, cow (mad cow disease) and sheep.
In a second step, we prove the disappearance of the possible Prion function in the last Omicron variant while this function is highlighted in the Wuhan parent strain, but also in ALL the other variants and in ALL the "injection vaccines" Pfizer, Moderna, etc.).
Then, in a third step, we are looking for possible Prion functions in 25 Spike proteins of strains, variants or vaccines representative of the evolution of the SARS-CoV2 virus pandemic from Wuhan initial strain to the last Omicron worldwide variant.
Finally, we present SIXTEEN cases of French, Belgium, Switzerland and Israel patients for whom Creutzfeldt-Jakob symptoms appeared within a very short time after Pfizer or Moderna injections.

3.1- Different research for Prions in representative species: PRNP in humans, cows (mad cow disease) and sheep as well as Prion TDP-43.

3.11 – The HUMAN PRNP PRION

https://www.ncbi.nlm.nih.gov/nuccore/AF085477.2

Homo sapiens prion protein precursor (PRNP) gene, complete cds
GenBank: AF085477.2

MANLGCMYLVATWSDLGLCKKRPPGGWWNTGSRYPGQPSPGGNRYPQQGGGWGQPQPHGGGWGQPHG
GGGWQPHQGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ
PKTNMKHMAGAAAGAVVGLLGYMLGSASTSPLIIIFGSYEDRYYRENMHRYPNOYAYRPMDEYSNQ
NFHDCVNITIKQHTVTIMKGENFTETDVKMRETVEMVEQMCITQYESQAWYQGSSMLFSSPPVILISFLI
FLIVG

PLAAC
http://plaac.wi.mit.edu

Figure 5 – PLAAC analysis of the Human PRNP Prion. Evidence of a Prion region between amino acids 30-120.
Figure 6 – Confirmation of Human PRNP Prion region by the Master code.

3-12– The OVIS PRION (Sheep) Prion


major prion protein precursor [Ovis aries]
NCBI Reference Sequence: NP_001009481.1
GenPept Identical Proteins Graphics

>NP_001009481.1 major prion protein precursor [Ovis aries]
MVKS\H\G\SWI\LVF\VAM\WSD\VGL\CKR\PKP\GGGG\NTG\GRK\RPQ\G\PS\PG\NR\YPPQ\GGG\WGQ\P\HHG\GWQ\PHG\GGWG\Q\PHG\GGG\WGQ\Q\GGSG\SHQ\WΝΝΚ\PKP\TN\MK\HV\A\AAA\A\G\V\GG\LLG\G\ML\G\MS\RP
LIHG\ND\Y\E\D\RY\K\N\M\R\Y\F\P\Q\V\Y\R\F\D\Q\Y\S\Q\NN\F\V\H\C\V\N\I\T\V\K\Q\H\T\V\T\T\T\K\G\E\N\F\T\E\D\K\I\ME
RV\VE\Q\MC\I\T\Q\Y\Q\R\E\S\Q\A\Y\Y\Q\R\G\AS\V\IL\F\S\P\V\I\L\L\S\F\L\I\F\LV\G

PLAAC
http://plaac.wi.mit.edu
OVIS Sheep Prion: Research Prion Function using PLAAC tool

Figure 7 – PLAAC analysis of the Ovis Sheep Prion. Evidence of a Prion region between amino acids 40-90 and perhaps 160-180

-nucleotides


Ovis aries prion protein (PRNP), mRNA
NCBI Reference Sequence: NM_001009481.1

>NM_001009481.1 Ovis aries prion protein (PRNP), mRNA

CDS 161..931
/gene="FRNP"
/gene_synonym="prion; Prp; PRPC; SIP"
/note="major prion protein; prion protein (p27-30) (Creutzfeldt-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia)"
/codon_start=1
/product="major prion protein precursor"
/protein_id="NP_001009481.1"
/db_xref="GeneID:493887"
/translation="MVKSHIGSWILVFVAMWSDLGCKKRKPFPGGGNTGSGRYRFQPQGSPGGNRYFPQGGGGQPHHGGWGQPHHGWWGQPlohGGGGQPHHGGGQPGGGHSGWQNHPSKPKTNNKHVAGAAAAGAVGGGLGSAMSRPL1HFNGDNYEDRYRENNYRFQVYVRFVDQYSQNNFVHDCVQHKQHTVTUDDKGEVFETEDIKMERVVEEQMCIQTQRESQAYYQRGAVSVLPSSPPVILLIFSLIFLIVG"
**Figure 8** – Confirmation of Ovis (Sheep) Prion region by the Master code.

### 3.13- The BOS Taurus (Cow) Prion


**Bos taurus prn mRNA for prion protein, complete cds**

GenBank: AB457178.1

```
gene
1..1352
/gene="prn"

CDS
11..805
/gene="prn"
/note="alternative splicing; see also Acc# AB457179.1"
/codon_start=1
/product="prion protein"
/protein_id="BBD75290.1"
/translation="MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQ
GGTHGQWNKPSKFKTINMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGSDYEDRY
YRENMRYPNgQVYRVFQYSNQMNPFVHDVCNITVKEHTTIITKGENFTETD"
```

PLAAC
[http://plaac.wi.mit.edu](http://plaac.wi.mit.edu)
Figure 9 – PLAAC analysis of the Bos Taurus (Cow) Prion. Evidence of a Prion region between amino acids 40-90 and perhaps 170-180P.

Figure 10 – Confirmation of Bos Taurus (Cow) Prion region by the Master code.
3.14- Other Prion risk : TDP-43 Prions

In (Classen, 2021), author suggests the spike protein target interaction were analyzed for the potential to convert intracellular RNA binding proteins TAR DNA binding protein (TDP-43) and Fused in Sarcoma (FUS) into their pathologic prion conformations.

Here we analyse TDP-43 Prion properties (Takashi Nonaka et al, 2013) and (Luke McAlary, 2019).

TDP-43


TARDBP TAR DNA binding protein [ Homo sapiens (human) ]
Gene ID: 23435,
https://www.ncbi.nlm.nih.gov/nuccore/NM_007375.4

Homo sapiens TAR DNA binding protein (TARDBP), mRNA
NCBI Reference Sequence: NM_007375.4

CDS 103..1347
/gene="TARDBP"
/gene_synonym="ALS10; TDP-43"
/note="TAR DNA-binding protein-43"
/codon_start=1
/product="TAR DNA-binding protein 43"
/protein_id="NP_031401.1"
/db_xref="CCDS:CCDS122.1"
/db_xref="GeneID:23435"
/db_xref="HGNC:HGNC:11351"
/db_xref="MIM:605078"
/translation="MSEYIRVTEDENDEPIEIPSEDDGTLLSTVTAQFPGACGLRYRNPVSQCVRQRLVQIGILHAPDGKWGNLVYVNYFKNKRMDETASSAVKVRQAVKTDIVLGLFQKETQDELKEYSTFGVLMQVKDLGTKHSKGFGFVRFTEYETQVKVNSHRHMDGRKCDKLNSKQDPLELSRKVFVRCTEDMDELEDFQSFYQYDGVMDFVFPFPRFAFVFTFADQIAQSLCEGDLIKGIVHSPNPAEHNSRQLERSGRFGGNPGFNGQNGFNSRGGAGNLGNQGSGMGGMNGFQAFSINPAHAAAQQAAAAQASSWGMGMLASQQINOQSGPSGNQNQNGMQRQFINQAEQGSGNSYSGSNGAAIGWGSASNAGSGSFNGFGSSMDSKSSGWGM"

PLAAC
http://plaac.wi.mit.edu
Prion TDP-43: research Prion function based on PLAAC tool

Figure 11 – PLAAC analysis of the TDP-43 Human Prion. Evidence of a Prion region between amino acids 280-390.

Figure 12 – Confirmation of Human TDP-43 Prion region by the Master code.
3.2 – How the Prion function present in the Spike proteins of strains, variants or vaccines, all based on the Wuhan parent strain, disappears in the Omicron variant

ZOOM on the 38 amino acids (473-510) WINDOW PRION from SPIKE WUHAN

PLAAC
http://plaac.wi.mit.edu

REGIONPRIONWUHAN

SKVGGNYNYLRLFRKSNLKFERDISTEIQAGSTPCNGVEGFNCYFPLQSYGFQPTNG
VGYQPYRVVLSFELLHAPATVCDDPKKSTNLVKNKC

Figure 13 – PLAAC evidence of a Prion region in the 100 amino acids region overlapping Wuhan Prion region.
Figure 14 – Master code confirmation of a Prion region in the 100 amino acids region overlapping Wuhan Prion region.

ZOOM on the 38 amino acids (473-510) WINDOW PRION from SPIKE Omicron

PLAAC
http://plaac.wi.mit.edu

SKVSGNYNYLYRKLKSLKPFERDISTEIYQAGNKPCNGVAGFNCYFPLRSFPRPTYG
VGHQPYRvvVLSFELLHAPATVCgpKsTNLVKNKCVN
100 amino acids Window Prion Region in OMICRON SOCAL (first USA California OMICRON case):
Proof that Prion was now ERASED

Figure 15 – PLAAC evidence that Prion region in the 100 amino acids region overlapping Omicron Prion region disappears totally.

Zoom analysis of the 38 amino acids of the Prion regions between Spikes Wuhan and Omicron

It seemed interesting to us to analyze the incidence of the 8 amino acid mutations located in the Prion region (amino acids 473 to 510 of the Spike) which differentiate the Wuhan parent strain and the latest Omicron variant. Let's remember these 8 mutations:

see https://covariants.org/variants/21K.Omicron

- S477N
- T478K
- E484A
- Q493R
- G496S
- Q498R
- N501Y
- Y505H
OMICRON PRION SPIKE
Nucleotides Prion region (114 bases):
TATCAGCCCGGTAAACAACCTTGTATGTTTGGAGGTTTTAATTGTTACTTTTTTACGATCATATAGTTCCGACCCTATGTTTGGTGGTACCAAACCATACAGGTA
Amino acids Prion region (38 amino acids)
473 510
YQAGNKPCNGVAGFNCYFPLRSYFRTYGVGHQPYRV
XX X X X X X
PLAAC analysis of this 38 amino acid sequence demonstrates the TOTAL disappearance of the Prion function although the presence of these 38 amino acids is conserved in positions in the Omicron Spike protein.

OMICRON Spike 38 amino acids Prion region zooming: NO

WUHAN PRION SPIKE
Nucleotides Prion region (114 bases):
ZOOMPRIONWUHAN <= SPIKREF[1416 on 114]
ZOOMPRIONWUHAN
TATCAGCCCGGTAGCACACCTTGTATGTTTGGAGGTTTTAATTGTTACTTTTTTACGATCATATGGTTCCAACCCACTAATGTTTGGTTACCAAACCATACAGGTA
Amino acids Prion region (38 amino acids)
473 510
YQAGSTPCNGVAGFNCYFPLQSYGQPNTNGVGYQPYRV
XX X X X X X

Figure 16 – The Prion function disappears totally in Omicron variant.

Now let's perform the same analysis on the Wuhan parent strain. Let us recall here that all the COVID-19 vaccines having been injected into hundreds of millions of humans to date have been constructed from this same sequence of the Wuhan Spike.

WUHAN PRION SPIKE
Nucleotides Prion region (114 bases):
ZOOMPRIONWUHAN <= SPIKREF[1416 on 114]
ZOOMPRIONWUHAN
TATCAGCCCGGTAGCACACCTTGTATGTTTGGAGGTTTTAATTGTTACTTTTTTACGATCATATGGTTCCAACCCACTAATGTTTGGTTACCAAACCATACAGGTA
Amino acids Prion region (38 amino acids)
473 510
YQAGSTPCNGVAGFNCYFPLQSYGQPNTNGVGYQPYRV
**Wuhan Spike 38 amino acids Prion region zooming: YES**

Figure 17 – The Prion function is present in the Wuhan initial sequence.

Here, contrary to the case of Omicron, the potential function of the Prion is well revealed by the PLAAC software.

**Let’s find the "PLAAC distance" between the 2 respective results Omicron and Wuhan:**

![Prion nature classification hierarchy between the 20 amino acids.](image)

**Figure 18**

We can now conclude by asserting that the 8 amino acid mutations, or 21% of this small region have ACTUALLY caused the TOTAL DISAPPEARANCE of the Prion function. Two questions remain "open":

1/ Was this Prion region "natural" or chimerical when the Wuhan virus emerged?
2/ Was this suppression of the Prion function natural following the "humanization" of the virus or was it provoked? This question also remains "open"...
3.3 - Possible Prion functions in 25 Spike proteins from SARS-CoV2 strains, variants or "vaccines" representative of the evolution of the SARS-CoV2 virus pandemic.

We studied the Spike sequences of 25 SARS-CoV2 genomes. In these Spikes we searched for the presence of possible regions likely to have the functionality of a Prion. For this we use the PLAAC bioinformatics software (Lancaster et al, 2014) and “Master code” (Perez§Montagnier, 2021).

Let us recall here the 8 amino acid mutations differentiating the Prion regions from the Spikes of Wuhan SARS-CoV2 and Omicron.

![Prion Region Diagram]

**Figure 19** – The 8 amino acid mutations differentiating the Prion regions from Wuhan SARS-CoV2 and Omicron Spikes.

Figure 20 below shows the Genomics/Proteomics image of the Master code relating to the region of 100 amino acids flanking the small Prion region of 38 amino acids.
3.31-Analysing the main 10 SARS-CoV2 and variants representative strains

Both Figures 21 to 24 demonstrate via both PLAAC software and Master Code method the presence of the Prion region around amino acids 500 of the Spike. We see that this Prion is present in the DELTA variant (Figure 21) but also in the Pfizer and Moderna vaccines (Figures 22-24) since ALL these vaccines were built from the Spike of SARS-CoV2 Wuhan.
Figure 21 – PLAAC software demonstrates the presence of the Prion region around amino acids 500 of the spike of the DELTA variant.

PFIZER « Vaccine » Spike
Figure 22 – PLAAC software demonstrates the presence of the Prion region around amino acids 500 of the spike of both vaccine Pfizer.
The Master Code method provides a global analysis of the roughness or fractal texture of both Genomics (Red) and Proteomics (Blue) of the Spike Prion region. As demonstrated in (Perez, 2021a), it can be seen that, compared to that of Figure 20 (Wuhan Spike Prion region), the Prion region of the Pfizer vaccine has a highly chaotic Master code curves at the level of fractal roughness (Genomics in particular). This roughness results from the "G" base doping of this sequence, the purpose of which is to increase the stability of the mRNA without changing the amino acids (by using the vagueness allowed by the genetic code in the translation codons \(\leftrightarrow\) amino acids).

Running now a similar analysis for MODERNA vaccine.

MODERNA Vaccine Spike

MFVFLVLLPLVSSQCVNLTTRTQLPAPQTSFTVRGVYVDKVFRSSVLHSTQDLPFSSFNVWFAIHVSSTSGNG
TKRFDPNFVLFNGYVFASKESSINIRGWIFGTTLDSKTQSSLIVNNATNVVIVCEFQNCNDPFGLGVYHKN
KSWMESEFRRVYSAANCTFEYVSVQFPLMDLEGKQGNKLRDFVNIDGFKFNSKHTPIVNLVRDLPQGPSAL
EPLVDPINNTRFQTLLALHRSYLTPGDDSSGWTAGAAAYYGVLQPRFTLLKYNENGTITDAVDCALDPLSE
TKTCTKSFETVEKGYQTNSNFVQPTESEINSNCLPFGEVNATRFASVAYWNRKNSCVADVLVNSASF
STFKCYYGVTSGTKLNDLCTFTNYADFVRGDEVRSQAPGTGKIDYNYKLPPDFTGCVIAWSNNSLDSKVG
NYYMLRQLFRKNSLPERSISTEIYQAAGSTPCNGVEIGNFNCYFPPLSQYGFPQNTNGYQPYVRVYLVSEFLHAP
ATVCVPKKSTNLKVKVNCNVFNFNLTVGTVESSNKFLPQQFQGRDIAADTTDAVRDPQTLFELDITPCSFQGVS
VITPGTNTSNQVAVLYQDNCTEVPVAIHADQLTPTWRVYSTGNSVQTRAGCLGAEVNSVECDIPAGIC
ASYQQTQNSPRRASVSAQSIAYTMSLFAMENSAYNSIAPTNTSVITTEILPSMTKSVDCTMYICGDS
CSNLQLQYGSCFTQLNRALTGAEQDKNTQEVFAQVKQIYKTIPDDDGFPFNGFNSQILPDPSPKRSFIEDLLFN
KVTLDADGFKQGYDCLGDIARDLCAQFKQNGLTVLPPLLDDMIAQYTSALLAGTTTGWTFGAGAALQIPF
AMQIAMYRFNGGVTQNVLYENQKLIANQFNSAIKQIDSSLTSASALGLQDVVQNQAQLNTLVKQLSSNF
AISVLNDISLDPPEAEQIDRLTITGLQLSQTYYTVTQLRAAEIRASANLAATKMSCEVLQSKVRDFCGK

Figure 23 – The Master Code method provides a global analyzes of the roughness or fractal texture of both Genomics (Red) and Proteomics (Blue) of the Spike Prion region.
MODERNA "Vaccine" Spike Prion region proof

**Figure 24** – PLAAC software demonstrates the presence of the Prion region around amino acids 500 of the spike of both vaccine Moderna.

**Table 2** – Presence of the Prion region in ALL historical SARS-CoV2 Spikes excepted in Bat RaTG13.

<table>
<thead>
<tr>
<th>Identification of main SARS-CoV2, variants and vaccines</th>
<th>PRION region amino acids 473-510</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-CoV2 Wuhan</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>ALPHA (UK)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BETA (South Africa)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>GAMMA (Brazil)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>DELTA (India)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>mRNA vaccins Pfizer</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>mRNA vaccins Moderna</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>batRaTG13</td>
<td>NO</td>
<td>Prion region totally absent</td>
</tr>
<tr>
<td>ScovZC45</td>
<td>YES (shifted)</td>
<td>In the 50 first amino acids</td>
</tr>
<tr>
<td>ScovZXC21</td>
<td>YES (shifted)</td>
<td>In the 50 first amino acids</td>
</tr>
</tbody>
</table>

We note that the Prion region does not exist in the Bat RaTG13. Curiously, the Prion region is also present in ScovZC45 and ScovZXC21 but this Prion region is located within the 50 first Spike amino acids and not in the 500 amino acids area. Why?
3.32-Analysing the seven first Omicron worldwide patients cases.

We are now studying the very first cases of patients with Omicron, in South Africa, Europe and the USA and Canada in particular. In ALL of these cases, the Prion region has disappeared.

**Table 3** – The seven first Omicron worldwide patient strains cases where the Prion region function disappears totally in ALL cases.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Identification of first Omicron worldwide patient strains</th>
<th>Prion region</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOSA1</td>
<td>One of the 3 first cases in South Africa</td>
<td>none</td>
</tr>
<tr>
<td>SOSA2</td>
<td>One of the 3 first cases in South Africa</td>
<td>none</td>
</tr>
<tr>
<td>SOSA3</td>
<td>One of the 3 first cases in South Africa</td>
<td>none</td>
</tr>
<tr>
<td>SOBEL</td>
<td>First case in Belgium</td>
<td>none</td>
</tr>
<tr>
<td>SOCAN</td>
<td>First case in Canada</td>
<td>none</td>
</tr>
<tr>
<td>SOMIN</td>
<td>Second case in USA and first case in Minesota</td>
<td>none</td>
</tr>
<tr>
<td>SUK</td>
<td>First case in UK</td>
<td>none</td>
</tr>
</tbody>
</table>

Results

3.33-Analysing 8 USA Omicron patients randomly selected from Genbank.

Finally, we study eight cases of patients affected by Omicron and coming from different states in the USA. In ALL of these 8 cases, again, the Prion region has disappeared.
3.34 - Meaning of the W or M structures of the Prion Master Code images

We observed that all the Prions had Master Code images patterns in “W” or in “M”, on the one hand, but also, on the other hand, that the Prion regions
detected by PLAAC corresponded to descending parts of these images. Several years ago we had the idea of imagining a kind of hypothetical gene which would be formed by the sequence of the 64 codons of the universal genetic code. What then would have been his Genomics/Proteomics signature of the Master Code? This is the image in Figure 25 below. Curiously, we notice that it too has an “M” shape.

Figure 26 – « M » shape running Master Code on the Universal Genetic Code 64 codons synthetic gene.

In the Table of the Genetic Code (Figure 26 right), the codons are classified according to the regular order TCAG. We also observe (Figure 26 left) that it is the second base of the codon triplets that dictates the meta structure of the Master Code image following the TCAG meta-order. Consequently the 2 descending regions of “M” patterns are the C and G bases.

To come back to the Prions, this therefore means that the Prion regions detected by PLAAC are regions in which the CG richness of the double strand of DNA increases, producing this regular "descending" shape.

Finally, let us note that the mRNA vaccines Pfizer and Moderna were doped with CG bases without modifying the corresponding amino acids (using the vagueness allowed by the Genetic Code). So, although their Prion region remains identical to that of the initial Wuhan Spike strain at the amino acid level, one can think that this CG base doping could amplify the Prion effect of vaccines if some unknown information (energy, dynamics?) is transmitted during the translation of mRNA into amino acids.
Figure 27 – Comparing Master code pattern Genomics/Proteomics signatures between both Spike Prion regions in SARS-CoV2 Wuhan and Omicron.

No major differences between Wuhan and Omicron "Master code" Prion regions
Although the 2 Master code images of the 2 respective Prion regions of SARS-CoV2 Wuhan and Omicron appear very similar, we note however that the transition of this region from Wuhan to Omicron results from the 8 amino acid mutations of this Prion region produced an improvement of more than 2% of the Genomics/Proteomics coupling 88.45% => 90.63%. What we interpret as a better adaptation of the Omicron virus vis-à-vis its human host.

It is interesting to discuss the relevance and consistency of this Prion region highlighting in the spikes of all pre-Omicron variants as well as in the spikes of all COVID-19 vaccines. The weak point of these results is that they remain qualitative. We lack a quantitative basis for comparison here. For example, the PLAAC amplitude of this Prion region of SARS-CoV2 remains low compared to the same analysis performed on the human prion PRNP. Fortunately, what would reinforce our discovery is a kind of proof by inhibition or negation: indeed we demonstrate how and by which mutations this Prion region could disappear... and, indeed, how it disappeared from ALL the Omicron variants analyzed.

This type of proof, then, becomes very strong: "it's by analogy a bit like using the shadow to prove the existence of light..."

Alas, the actual cases of Creutzfeldt-Jakob-like illnesses soon after the injections of Covid-19 vaccines that will be presented now will prove that the hypothetical Prion function that we have just detected does indeed exist.

3.35 - A possible path towards understanding the Prion effect.

Let's look at the well-known table of the universal Genetic Code:

The 4 amino acids Prion Function facilitators N Q Y G are "topogically" close the 3 Stop Codons (20% of amino acids)

![Table of the Universal Genetic Code]

Figure 28 – The Universal Genetic Code T C A G two dimensions Table and the relative locations of NQYG Prion facilitators amino acids relating Stop codons locations.
The idea started from 2 observations from the universal genetic code Table. On the one hand, during the formation of a protein from mRNA codons, there is a trap to avoid: not to "fall" in an anticipated manner on one of the 3 Stop codons. On the other hand, if we are interested in NQYG, the 20% of the codons most favorable to the Prion function, we can think that these amino acids could, by their biophysical nature, consist of a weak link in the solidity of a structure in Helix.

We then have the idea of considering the table of the genetic code as the topology of a 2-dimensional 2D object in which the 3 Stop codons would be a kind of "hole" in the vicinity of which the slightest mutation of a nucleotide can pose a problem. We then have the intuition to locate the 4 amino acids N Q Y G vis-à-vis the "well" formed by the 3 Stop codons.

Table 5 – Analysing amino acids mutations which are located close codons Stops in the universal genetic code table.

<table>
<thead>
<tr>
<th>Stop</th>
<th>N</th>
<th>Q</th>
<th>Y</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAA</td>
<td>AAU</td>
<td>CAA</td>
<td>UAU</td>
<td></td>
</tr>
<tr>
<td>UAG</td>
<td>AAC</td>
<td>CAG</td>
<td>UAC</td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGA</td>
<td></td>
<td></td>
<td></td>
<td>GGA</td>
</tr>
</tbody>
</table>

Table 5 above shows that these 4 amino acids N Q Y G are "topologically" close to the Stop codons; in 5 of the 7 cases of Stop <==> N Q Y G mutations, a single mutated base would suffice. There is the case for the 3 Prion amino acids Q Y and G.

In conclusion, this thesis deserves to be explored to understand this mechanism of Prions.

3.4- SIXTEEN (16) cases of French patients for whom the Creutzfeldt-Jakob symptoms appeared within a very short time after Pfizer , Moderna or AstraZeneca injections.

In a few weeks, more 40 cases of almost spontaneous emergence of Creutzfeldt-Jakob disease have appeared in France very soon after the injection of the first or second dose of Pfizer, Moderna or AstraZeneka vaccines.

We analyse here sixteen cases fully documented at symptoms evolution timing. Some of the following results were presented at a Neurology congress in London in March 2022 (Moret-Chalmin et al, 2022).
3.41- Presence of Prion region in both SARS-CoV2 Variants and Vaccines.

In this article, we have just demonstrated that the spikes of ALL variants except Omicron contained a Prion region (Tables 2, 3 and 4). (Tetz§Tetz; 2022) analyzed the nuances of this Prion region according to all variants of SARS-CoV2 as demonstrated by Figure 29.

![Figure 29](https://example.com/figure29.png)

**Figure 29** – (copyright Tetz§Tetz, 2022) Figure 3. Heatmap showing PrD within the S protein in SARS-CoV-2 variants. The correlation between the LLR scores of the identified PrDs in the S protein across different SARS-CoV-2 variants is presented. Mean LLC scores of S protein are denoted using a color scale, ranging from white (minimum) to saturated red (maximum). Higher LLC scores indicate a higher possibility that the analyzed protein is a prion.

But we have also demonstrated (Figures 22 to 24) that the Spikes of the Pfizer and Moderna mRNA injections also contain this same Prion region. The same is true of ALL the other SARS-CoV2 vaccines since ALL are made from the Spike sequence of SARS-CoV2 from Wuhan, which we have demonstrated contains the Prion region (Table 6).

To our knowledge, the only article that has to date demonstrated the link between COVID-19 vaccination and the almost immediate emergence of Creutzfeldt-Jakob disease was established by (Kuvandik A, 2021) at the end of 2021. It was a 82 years old Turkish patient who received an injection of the Chinese Sinovac vaccine (CoronaVac, Sinovac Life Sciences, Beijing, China).

**Table 6** – Recall Prion region in various SARS-CoV2 Variants and Vaccines

<table>
<thead>
<tr>
<th>Identification of main SARS-CoV2 variants</th>
<th>PRION region amino acids 473-510 detected</th>
<th>PRION region amino acids 473-510 not detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>4.856</td>
<td></td>
</tr>
<tr>
<td>Alpha B.1.1.7</td>
<td>4.856</td>
<td></td>
</tr>
<tr>
<td>Beta B.1.351</td>
<td>4.208</td>
<td></td>
</tr>
<tr>
<td>Gamma P.1</td>
<td>4.208</td>
<td></td>
</tr>
<tr>
<td>Delta B.1.617.2</td>
<td><strong>6.005</strong></td>
<td></td>
</tr>
<tr>
<td>Lambda C.37</td>
<td>4.991</td>
<td></td>
</tr>
<tr>
<td>Kappa B.1.617.1</td>
<td>4.856</td>
<td></td>
</tr>
<tr>
<td>Epsilon B.1.427</td>
<td>4.856</td>
<td></td>
</tr>
<tr>
<td>Zeta P.2</td>
<td>4.856</td>
<td></td>
</tr>
<tr>
<td>Omicron 1.1.529</td>
<td>3.080</td>
<td></td>
</tr>
<tr>
<td>SARS-CoV2 Wuhan (D614G)</td>
<td>by PLAAC</td>
<td>by PLAAC</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>ALPHA (UK)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BETA (South Africa)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>GAMMA (Brazil)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>DELTA (India)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>OMICRON (South Africa)</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

**Identification of SARS-CoV2 vaccines**

<table>
<thead>
<tr>
<th></th>
<th>PRION region amino acids 473-510 detected by PLAAC</th>
<th>PRION region amino acids 473-510 not detected by PLAAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA vaccine Pfizer</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>mRNA vaccine Moderna</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Astra Zeneka vaccine</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Janssen vaccine</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

**3.42- Creutzfeldt-Jakob in France.**

Considering the situation of officially declared CJD diseases in France, only 28 cases of vCJD were diagnosed in France between 1992 and 2019. The last known French case of vCJD died in 2019 (reference https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-infectieuses-d-origine-alimentaire/maladie-de-creutzfeldt-jakob).

On the other hand, all research in France on Prions has been frozen since mid-2021 following the death of technicians from French public research laboratories.

**3.43- The specific first case of the Princeps Doyer.**

Female patient, 72-year-old. First clinical signs at week 2 after second shot of Sars-cov2 vaccination: paresthesias of left dorsal foot, vertigo, feeling of « foggy head », fatigue, depression, left hyperalgesic sciatic. Vestibular MRI reveals ancient white matter infarct lesions. After being hospitalized in CHR de Beauvais for 5 days where blood puncture happens to stop pouring normally, back home, new clinical signs occur: gait disturbances, hyperesthesia of right leg with nocturnal burning pain. Violent myoclonus appear. Rapid neurological decline is observed. The American Hospital in Paris concludes to CJD: Lumbar puncture, biomarkers, Protein 14-3-3, EEG, diffusion-weighed MRI and Flair, Petscan, all positive with very high sensitivity and specificity. At Week 10: akinetic mutism, bedridden, hypersomnia. From then, Hospitalization at home (HAD) with: anxiety attacks, agitation, myoclonus, parenteral nutrition, intermittent respiratory distresses under Midazolam for treatment of status epilepticus. Our observation indicates that the extended survival period among this prion disease is likely due to the management procedure implemented in this family which is continued after this patient reaches the akinetic mutism state (Iwasaki Y, 2015).
Figure 30 – The case 4 or PRINCEPS DOYER: M.D., a 72 old French woman with the first CJD symptoms only 14 days after PFIZER jab.
Figure 31 – The case of M.D.: MRI, PET and EEG (D. M) -Brain MRI (Diffusion Weighted Imaging) and (Fluid-Attenuated Inversion Recovery: FLAIR) and (T2): abnormalities of parietal lobes predominantly on the left side and of cingulate gyrus. -FDG-PET: hypometabolism of right hemisphere predominantly in the right frontal and parietal lobes. -EEG: 6Hz background activity and 6 seconds of 1Hz triphasic periodic spikes in the right hemisphere.

The blue rectangle in the EEG is a typical proof of CREUTZFELDT-JAKOB disease (6 seconds of 1 Hertz triphasic periodic spikes).
3.44- Detailed analysis of 16 CJD cases emerging a few days after the COVID-19 Jab.

In (Lemstra AW, 2000) “14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients”, a robust method for diagnosing Creutzfeldt-Jakob disease is described:

**Sensitivity and specificity of biomarkers:** The protein 14-3-3 is highly sensitive (97%) and specific (87%) marker for CJD when used in the highly typical semiological setting and exploration. The combination of increased T-tau levels and increased T-tau to P-tau ratios in patients with CJD has also a very high specificity in the routine clinic. The recently developed RT-QuIC test allows for highly sensitive and specific detection of CJD in human cerebrospinal fluid and is moreover a key diagnostic tool. although, it may miss 11 to 23% of CJD cases.

We used such proven methods to diagnose and authenticate the 16 cases of CJD described below.

**Table 7 – Analy cases sing 16 COVID-19 vaccines Creutzfeldt-Jakob patients cases.**

<table>
<thead>
<tr>
<th>Case</th>
<th>Country</th>
<th>Age</th>
<th>Sex</th>
<th>Vaccine type and dose</th>
<th>Vaccine date</th>
<th>First symptoms</th>
<th>Creutzfeldt-Jakob diagnostic</th>
<th>Maximum symptoms</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>France</td>
<td>72</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>20 April 2021</td>
<td>30 April 2021 (+10)</td>
<td>20 May 2021 (+31)</td>
<td>20 May 2021 (+31)</td>
<td>6 July 2021 (+76)</td>
</tr>
<tr>
<td>Case 2</td>
<td>France</td>
<td>52</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>28 May 2021</td>
<td>5 June 2021 (+7)</td>
<td>28 July 2021 (+30)</td>
<td>28 July 2021 (+30)</td>
<td>16 September 2021 (+78)</td>
</tr>
<tr>
<td>Case 3</td>
<td>France</td>
<td>48</td>
<td>F</td>
<td>Pfizer 2nd</td>
<td>25 August 2021</td>
<td>26 August 2021 (+1)</td>
<td>8 October 2021 (+43)</td>
<td>9 October 2021 (+44)</td>
<td>13 November 2021 (+78)</td>
</tr>
<tr>
<td>Case 4</td>
<td>France (Princeps DOYER)</td>
<td>72</td>
<td>F</td>
<td>Pfizer 2nd</td>
<td>5 May 2021</td>
<td>19 May 2021 (+14)</td>
<td>5 July 2021 (+61)</td>
<td>5 July 2021 (+61)</td>
<td></td>
</tr>
<tr>
<td>Case 5</td>
<td>France</td>
<td>73</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>30 April 2021</td>
<td>10 May 2021 (+10)</td>
<td>7 June 2021 (+37)</td>
<td>7 June 2021 (+37)</td>
<td>23 June 2021 (+56)</td>
</tr>
<tr>
<td>Case 6</td>
<td>France</td>
<td>75</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>18 March 2021</td>
<td>26 March 2021 (+8)</td>
<td>18 April 2021 (+30)</td>
<td>8 April 2021 (+20)</td>
<td>26 May 2021 (+68)</td>
</tr>
<tr>
<td>Case 7</td>
<td>France (KJ16)</td>
<td>60</td>
<td>M</td>
<td>Pfizer 3rd</td>
<td>31 August 2021</td>
<td>26 September 2021 (+15)</td>
<td>25 November 2021 (+85)</td>
<td>15 October 2021 (+45)</td>
<td>23 December 2021 (+113)</td>
</tr>
<tr>
<td>Case 8</td>
<td>Israel</td>
<td>62</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>22 May 2021</td>
<td>7 June 2021 (+15)</td>
<td>19 June 2021 (+27)</td>
<td>19 June 2021 (+27)</td>
<td>10 August 2021 (+78)</td>
</tr>
<tr>
<td>Case 9</td>
<td>France (KJ17)</td>
<td>50</td>
<td>F</td>
<td>Pfizer 1st</td>
<td>10 June 2021</td>
<td>11 June 2021 (+1)</td>
<td>6 December 2021 (+146)</td>
<td>1 September 2021 (+80)</td>
<td>17 December 2021 (+187)</td>
</tr>
<tr>
<td>Case 10</td>
<td>Belgium</td>
<td>69</td>
<td>M</td>
<td>Pfizer 1st</td>
<td>8 April 2021</td>
<td>9 April 2021 (+1)</td>
<td>12 May 2021 (+34)</td>
<td>12 May 2021 (+34)</td>
<td>14 June 2021 (+66)</td>
</tr>
<tr>
<td>Case 11</td>
<td>Switzerland</td>
<td>67</td>
<td>F</td>
<td>Moderna 2nd</td>
<td>22 May 2021</td>
<td>7 June 2021 (+15)</td>
<td>1 December 2021 (+188)</td>
<td>18 June 2021 (+26)</td>
<td>14 December 2021</td>
</tr>
<tr>
<td>Case</td>
<td>France</td>
<td>Age</td>
<td>Gender</td>
<td>Vaccine</td>
<td>Date of Injection</td>
<td>Date of Symptoms</td>
<td>Date of Death</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>France</td>
<td>70</td>
<td>F</td>
<td>Pfizer 3rd</td>
<td>18 November 2021</td>
<td>3 December 2021 (+15)</td>
<td>11 January 2022 (+53)</td>
<td>2 January 2022 (+42)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>France</td>
<td>77</td>
<td>F</td>
<td>Astra Zeneca 2nd</td>
<td>End July 2021</td>
<td>End August 2021 (+30)</td>
<td>October 2021 (+60)</td>
<td>1 October 2021 (+60)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>France</td>
<td>62</td>
<td>M</td>
<td>Pfizer 1st</td>
<td>6 July 2021</td>
<td>11 July 2021 (+5)</td>
<td>10 December 2021 (+154)</td>
<td>Presently (&gt;+180)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>France</td>
<td>72</td>
<td>F</td>
<td>Pfizer 1st</td>
<td>7 June 2021</td>
<td>22 June 2021 (+15)</td>
<td>20 August 2021 (+73)</td>
<td>11 November 2021 (+154)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>France</td>
<td>72</td>
<td>M</td>
<td>Pfizer 2nd</td>
<td>31 May 2021</td>
<td>15 June 2021 (+15)</td>
<td>8 October 2021 (+128)</td>
<td>8 October 2021 (+128)</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 32 – The CASES 1 to 3**
Figure 33 – The CASES 5 to 7

Figure 34 – The CASES 8 to 10
Figure 35 – The CASES 11 to 13

Figure 36 – The CASES 14 to 16
The average delay between the COVID-19 Jab date and the first symptoms date is only of 11.06 days (average of the 16 reported cases).

It is interesting to observe that the only case of first symptoms located at 30 days is a case of the Astrazeneca DNA vaccine, while all the other cases - which are all mRNA vaccines - are at 15 days at the latest. This trend is confirmed by a second Astrazeneca case not reported among the 16 cases analysed. Could this mean that the mRNA vaccines Phizer and Moderna lead to CJD forms faster than DNA vaccines?

What is the diversity of these symptoms?

Table 8 – Analysing 16 detailed symptoms cases COVID-19 vaccines Creutzfeldt-Jakob patients cases.

<table>
<thead>
<tr>
<th>Case and VACCINE references</th>
<th>First symptoms</th>
<th>Maximum symptoms</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1 (N°1)</td>
<td>30 April 2021 (+10 days) Onset of clinical signs: shortly after, blinking and dysmorphopsia. Missing the word. The patient begins to search for his words. Aphasia.</td>
<td>20 May 2021 (+31 days) Bilateral contracture of the hands (dystonia) and violent clonia of the hemicorps upright, sitting erect and motionless (pathognomonics of CJD). Fatigue+++</td>
<td>6 July 2021 (+76 days)</td>
</tr>
<tr>
<td>Pfizer 2nd</td>
<td>20 April 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case2 (N°2)</td>
<td>Pfizer 2nd</td>
<td>28 May 2021</td>
<td>5 June 2021 (+7 days)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Case3 (N°3)</td>
<td>Pfizer 2nd</td>
<td>25 August 2021</td>
<td>26 August 2021 (+1 days)</td>
</tr>
<tr>
<td>Case4 (N°4)</td>
<td>Pfizer 2nd</td>
<td>5 May 2021</td>
<td>Princeps DOYER, 19 May 2021 (+14 days)</td>
</tr>
<tr>
<td>Case5 (N°5)</td>
<td>Pfizer 2nd</td>
<td>30 April 2021</td>
<td>10 May 2021 (+10 days)</td>
</tr>
<tr>
<td>Case6 (N°6)</td>
<td>Pfizer 2nd</td>
<td>18 March 2021</td>
<td>26 March 2021 (+8 days)</td>
</tr>
<tr>
<td>Case7 (KJ16)</td>
<td>Pfizer 3rd</td>
<td>31 August 2021</td>
<td>15 September 2021 (+15 days)</td>
</tr>
<tr>
<td>Case 8</td>
<td>7 June 2021 (+15 days)</td>
<td>19 June 2021 (+27 days)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td>A few days later, arrived in France, onset of clinical signs: - Leg pain. - Dysarthria with bradyphemia (slowing of the flow) when it is French-speaking. - Mood disorders: anxiety-depressive syndrome and irritability.</td>
<td>- Language disorder+++ increasing increase. - Tired. - Persistent lower limb pain. - Generalized akinesia. - Progressive logopenia (impoverishment of language) up to mutism. - Ideational apraxia (can no longer use objects to eat). - Gait disturbances with spastic stiffness. - Pain+++ - Clonies++ - Dysphagia requiring the placement of a feeding tube.</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>22 May 2021</td>
<td>10 August 2021 (+78)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 9</th>
<th>11 June 2021 (+1 days)</th>
<th>1 September 2021 (+80 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer</td>
<td>At night (12 hours later), following the injection: total insomnia. She complains about not having slept a wink all night. Insomnia persists for the following days. Persistent neck pain to the point of going to see your osteopath several times with pain in the left arm (Upper limb having received the injection).</td>
<td>At work, behavioral problems with uncontrollable irritability. In September her collaborator noticed that when she was on the phone she can no longer give his first and last name as well as the name of their company that is an insurance agency. So miss the word to work on words considered automatic. So slight language disorders followed during his vacation in Corsica, end September, a spectacular loss of balance in the water testifying to a slight balance disorder that sets in.</td>
</tr>
<tr>
<td>KJ17</td>
<td>10 June 2021</td>
<td>17 December 2021 (+187 days)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 10</th>
<th>9 April 2021 (+1 days)</th>
<th>12 May 2021 (+34 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer</td>
<td>The day after the vaccination, he does not feel well. He says he feels all funny. He complains about his eyes. - Presence of diffuse bruises (bruises on the chest) - Decreased vision+++ - Appearance of hypertension for the first time. (max 200-210) - Behavioral disorder with excitement and feverishness. - Confusion with temporo-spatial disorientation. - Impaired working memory. He cannot perform two tasks at the same time.</td>
<td>Day 5 after the injection, onset of aphasia. Missing the word. - Aphasia with lack of words and anterograde memory impairment. D34, a little over 4 weeks after the injection, he receives an infusion corticosteroid and triggers a violent acute psychotic episode with hallucinations and delirium. Extreme commotion. - Sudden aphasia afterwards.</td>
</tr>
<tr>
<td>N°8</td>
<td>8 April 2021</td>
<td>14 June 2021 (+66 days)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 11</th>
<th>7 June 2021 (+15 days)</th>
<th>18 June 2021 (+26 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderna</td>
<td>Onset of clinical signs: - Fatigue only. 2 weeks after vaccination, onset of psychotic attacks. His troubles culminated on June 18 with an attempt at autolysis.</td>
<td>Temporo-spatial disorientation. In October, language disorders set in: bradyphemia, logopenia and pallalia (echoing repetition of the same syllable). Then silence with comprehension disorders. Behavioral disorders with smiling depression.</td>
</tr>
<tr>
<td>N°9</td>
<td>22 May 2021</td>
<td>14 December 2021 (+202 days)</td>
</tr>
<tr>
<td>Case 12  (Patient12)</td>
<td>3 December 2021 (+15 days)</td>
<td>2 January 2022 (+42 days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Pfizer</td>
<td>15 days after the third dose, in the morning, his wife gets up crying. She tells him that her eyesight has dropped sharply. She no longer saw her husband as before. She saw him big: “Weird thing, how come? » ; In fact, he is not obese and has not changed in size. Dysmorphopsia. Not of hallucinations. Tears. So impression of a sudden drop in visual acuity.</td>
<td>Strong fatigue. She no longer tastes like anything. Total disinterest. Depression. Stop reading the press; she followed the numbers and letters on her Tablet. She interrupts this activity. She stops watching TV in the afternoon. She no longer has a taste for cooking when she was a good cook and this, from one day to the next, brutally. Behaviour change brutal. No sleep disturbance. His condition continues to deteriorate a little more each day: problems for dress alone. Dressing apraxia. In the bathroom, in the morning, she could no longer put on his braces. Dysexecutive syndrome: she no longer knows how to cook. She has no appetite. Anorexia.</td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 November 2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 13  (Patient13)</th>
<th>End August 2021 (+30 days)</th>
<th>1 October 2021 (+60 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astra Zeneka</td>
<td>Beginning of clinical signs: Change in behavior at the end of August 2021 after one month. Disorders of behavior: at the end of August, this grandmother no longer had patience with her grandson and verbally aggressive towards him. For example, &quot;she had been playing the Seven Families game for a long time as a family but at that moment, she no longer knows the rules of the game&quot;. She was happy before but at the end of August, receiving his children and grandchildren: Mood disorders. Memory disorders. Behavioral disorders; becomes a &quot;mean grandmother&quot;. At this time, no walking disorder but language disorders: Missing the word +++; Difficulties in making sentences: &quot;I'm at home&quot; for example. Agrammatism.</td>
<td>Around September 15. The morning of the date she cry. She says, &quot;I know they're going to keep me because I'm losing my mind.&quot; Since this weekend in Etretat, she has been doing a lot of mischief in the house. Through example, she sets fire to the dead leaves and the next day she says: &quot;I think that someone set fire to our plants at home...” paranoid delirium. She has significant memory problems. Anterograde amnesia. The attending physician runs memory tests and many errors hence the sending to the emergency room of the Cherbourg Hospital in neurology then. State of panic of the patient. She followed her husband everywhere and held him by the hand. She was looking for him everywhere. She is lost. For example, she bakes an apple pie with her husband who is called on the phone. During this interlude, she interrupts her activity and stare at an apple.</td>
</tr>
<tr>
<td>2nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End July 2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 14  (Patient14)</th>
<th>11 July 2021 (+5 days)</th>
<th>Presently (≥180 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer</td>
<td>Beginning of clinical signs: No headache, no dizziness. Insidious onset +++: the patient showed small cognitive signs affecting the memory. He forgot the names of objects or people. First names could be forgotten. He could</td>
<td>Since then, Hospitalization at home (HAD) with passage of nurses. It continues to decline. Currently &quot;locked up in his body&quot; as in a &quot;sarcophagus&quot;. Akinetic mutism. He says yes or no with his eyes from</td>
</tr>
<tr>
<td>1st</td>
<td>Presently (≥180 days)</td>
<td>Presently (≥180 days)</td>
</tr>
<tr>
<td>6 July 2021</td>
<td>Presently (≥180 days)</td>
<td>Presently (≥180 days)</td>
</tr>
</tbody>
</table>
perform contractions of 2 almost synonymous words by borrowing the initial syllable of one and the final syllable of the other to lead to a neologism. Example: “River and river could result in river”. Lack of words: he was looking for his words. Mood decline: Depression. Repeated falls appear on the motor plan and increase in frequency spontaneously when walking and crossing obstacles. Then a persistent cough occurs which leads him to consult 2 to 3 times his general practitioner or rather his replacement. The diagnosis made is that of chronic bronchitis. The patient expresses his unhappiness: "I feel that things are not going well". According to his wife, “it was not as usual”. Anxieties arise: he could no longer go to bed without the presence of his wife and followed her wherever she went. Behavioral problems as a result.

time to time. He still feeds on the small spoon and drinks with a straw. There is no bronchial congestion. Beginning dysphagia. Fixed cervical dystonia in lateralized anterocollis preventing saliva from stagnate. Fixed contracture of the sterno-cleido-mastoid. Awakening disorders: following erysipelas at the injection site and changing topography in the stomach, prolonged waking disorders.

| Case 15 (CJ15) | Pfizer 1st 7 June 2021 | 22 June 2021 (+15 days) decreased visual acuity. Loss of abnormal visual acuity. | 11 November 2021 (+154 days) Tremors, clones. Balance disorders and spontaneous falls. There are no swerves. After a long period of sitting position, when she gets up, her balance is disturbed. She drags the feet. | 12 February 2022 (palliative care) (+245 days) |
| Case 16 (KJ10) | Pfizer 2nd 31 May 2021 | 15 June 2021 (+15 days) From June 15 change of mood with hyperactivity and euphoria "moria" as if the patient had taken two glasses of wine, when he was not drinking no alcohol at all; He also said that “it had boosted him”. So mood swings. Dysthymia. | 8 October 2021 (+128 days) From October 8, he has difficulty speaking and walking. Disorders of walking and language take hold. In mid-October, he cannot return from petanque two km from his home with a spatial disorientation. | 30 December 2021 (+210 days) |

**IV- CONCLUSIONS**

Etiopathogenic hypothesis remains mysterious and deserves far more further investigations. We only discuss a new type of Creutzfeld Jakob because of the acute onset and the fatal very rapid issue as well as the immediate triggering effect of mRNA based immunotherapy. Increase in frequency of CJD or spongiform encephalopathy or prion diseases is still to confirm, worldwide. The first results, in France, Belgium, Switzerland and Israel suggest high increase.

Finally, we will retain 3 major results of this study:
- First, we demonstrate the existence of a Prion region in all the Spikes of the original SARS-CoV2 strain from Wuhan, of all the variants and of all the "vaccines" since they were all constructed from this original spike from Wuhan.
- Second, we demonstrate that this Prion region has totally disappeared in the latest Omicron variant. This can be explained by the philogenic tree of the SARS-CoV2 viruses, of which the Omicron is the result of one of the very first branches, then it would have
evolved quietly in sleep in South Africa, to finally emerge in November 2021. in a form that was to become dominant.

Finally, and this is the third remarkable result, if the presence of this Prion region in all COVID-19 vaccines constituted "a necessary but not sufficient reason" for the emergence of a possible Prion disease, we bring here the formal evidence of this new form of CJD soon after injection.

Indeed, of the 16 cases studied here, the first symptoms appeared on average 11.06 days after the injection (with a dispersion ranging from a minimum of 1 day to a maximum of 30 days.

V- ACKNOWLEDGEMENTS

We mainly thank Mr. Marc Doyer (President of the CJD France Association) who, in addition to assuming the dramatic CJD disease of his wife, Mauricette, (The specific first case of the Princeps Doyer), had, in a few months, via his Association VERITY CJD, the energy and the tenacity to collect more than 40 cases of CJD including the 16 cases reported here.

We also thank the professor Richard M Fleming, (PhD, MD, JDPhysicist-NuclearCardiologist-Attorney, https://www.amazon.fr/COVID-19-Bioweapon-Scientific-Forensic-investigation/dp/1510770194) which from 2020 suggested a link between the Spike protein and Prion diseases.

Our thanks also to Professor emeritus Amos D Korczyn (CONy President Department of Neurology Tel Aviv University, https://cony.comtecmed.com/korczyn/) who encouraged us in this draft article.

Finally, we would like to thank Dr Stephanie Seneff (MIT Artificial Intelligence Lab. https://worldcouncilforhealth.org/multimedia/stephanie-seneff-covid-vaccines-disease/) who reported the Princeps Doyer as a worldwide reference case of the possible link between Covid19 vaccines and CJD.

VI- REFERENCES


(P.LAAC: a web and command-line application to identify proteins with Prion-Like Amino Acid Composition) *Bioinformatics* doi:10.1093/bioinformatics/btu310


(Perez§Montagnier, 2021), Perez and Montagnier (2021) - Perez, J. C., & Montagnier, L . (2021). SIX FRACTAL CODES OF LIFE FROM BIOATOMS ATOMIC MASS TO CHROMOSOMES NUMERICAL STANDING WAVES:


