Rense.com



Mycoplasma Incognitus Patent
Excerpt Shows Massive Infection
In AIDS Victims
1-29-01


Note - Donald Scott, in his 1-25, 3 hour interview with Jeff, made the case that mycoplasma fermentans incognitus, a deadly human-engineered killer, is responsible from a number of catastrophic diseases. Here is a small excerpt from the US Army patent on Mycoplasma Incognitus Fermentens. We urge you to listen to the Scott interview and to order the large packet of printed scientific, clinical research material supporting his contention.
 
Tapes of the Scott interview can be ordered for only $12 by calling 888 836-4670.
 
For the printed material, send $20 to:
 
Donald Scott
Box 133
Stn B Sudbury, Ontario Canada
P3E 4N5
 
Here are quoted sections from the following US patent demonstrating the totality of infection with M. fermentans incognitus in AIDS victims. Is M. incognitus an 'opportunistic' infection - or causal factor of AIDS?
 
From US Patent -
 
LINK
 
RESULTS
 
Thymus
 
Many patients with AIDS suffer a profound deficiency in cell mediated immunity. It is well known that development of competent T-cell immunity is thymus dependent. Therefore, four thymic tissues available from patients with AIDS were examined for possible M. fermentans incognitus infection. Two of the thymic tissues were described grossly at autopsy as involuted thymus, one from a two year old and the other from a eight year old. Both of these pediatric patients contracted AIDS from blood transfusions. The other two thymuses were derived from adult AIDS patients and the autopsy reports contained no specific gross tissue description. Immunohisto-chemical studies, using M. fermentans incognitus-specific monoclonal antibodies, showed positive immunoreaction in all four thymic tissues. Both mononuclear lymphohistiocytes and epitheloid cells were stained positively (FIG. 26).
 
FIG. 26 shows the immunhoistochemistry of thymic tissues derived from patients with AIDS. FIG. 26A is a low-magnification photograph of a thymus immunostained by M. fermentans incognitus-specific monoclonal antibody (C42H10) (X71.5). FIG. 26B is a higher magnification of the positively immunostained lymphohistiocytes in the junction between cortex and medulla shown in 26A, left curve arrow (X715). FIG. 26C is a higher magnification of the positively immunostained lymphohistiocytes in the septal interstitial tissues in 26A, right curve arrow (X715). FIG. 26D is a low-magnification photograph of a thymus from another AIDS patient (X126.5). FIG. 26E is a higher magnification of the positively immunostained cells in 26D (X142).
 
Electron microscopic examination of the areas of the thymus with significant positive immunoreaction showed ultrastructurally many particles resembling mycoplasma. The particles were located both intracellularly in the cytoplasm of lymphohistiocytes (FIG. 27 A, B) and apparently free-growing extracellularly (FIG. 27 C, D). FIG. 27 shows an electron micrograph of an AIDS thymus immunostained positively for M. fermentans incognitus-specific antigens. FIG. 27A is an electron micrograph of mononuclear lymphohistiocytes with many intracytoplasmic electron dense mycoplasma-like particles (arrows) (N is the nucleus and bar represents 100 nm). FIG. 27B is a higher magnification of the electron dense mycoplaslma-like particles in the cytoplasm of a mononuclear cell shown in 27A (P is a polysomal structure and bar represents 100 nm). FIG. 27C is an electron micrograph of many mycoplasma-like particles found both inside the membrane bound cytoplasmic vesicle (arrow heads) and also extracellularly in the interstitial tissue (arrows) (N is the nucleus with degenerating changes, Bar represents 100 nm). FIG. 27D is a higher magnification of the extracellular mycoplasma-like particles. The outer limiting membrane of some particles (arrows) can be identified (Bar represents 100 nm). Most of the nearly spherical particles measured 100-300 nm. No cell wall was associated with these particles. However, a prominent halo with a clear space surrounding each of these intracellular particles was commonly noted.
 
Occasional cells exhibited cytopathological changes and even appeared to be necrotic. However, most cells in these tissues were morphologically unremarkable. There was no tissues reactive process and/or an inflammatory reaction identified.
 
Liver
 
Ten livers from patients with AIDS who had unexplained abnormal liver function tests were examined. Work-ups for both hepatitis B and A infections were negative in these patients.
 
Four of these ten livers were positive by immunohistochemistry using M. fermentans incognitus-specific monoclonal antibodies. Histopathology of these four livers varied from no pathological changes except mild periportal infiltrates of lymphohistiocytes (two) to fulminant hepatocyte necrosis without any inflammatory reaction (one) and patchy areas of hepatocyte necrosis associated with prominent acute and subacute inflammation (one). The positively immunostained cells in these livers were the infiltrating inflammatory cells and the hepatocytes with or without any evidence of cytopathological changes (FIG. 28). Some areas of sinusoidal space lined by Kupffer cells were also stained positively.
 
FIG. 28 shows the immunohistochemistry of livers derived from patients with AIDS, using monoclonal antibody C42H10. FIG. 28A is a photomicrograph at a portal area in an AIDS liver with patchy areas of necrosis. Prominent infiltrates of chronic inflammatory cells and proliferation of bile ducts (arrows) are identified (X390). FIG. 28B is a higher magnification of the positively immunostained cells in 28A (X780).
 
FIG. 28C is the same portal area shown in 28A in a subsequent tissue section immunostained by a nonspecific monoclonal antibody with the same isotype IgCl/k. Hemosiderin pigments (arrow heads) are noted (X390). FIG. 28D is an immunohistochemical photomicrograph of another AIDS liver. No necrosis or histopathological changes other than mild infiltrates of chronic inflammatory cells in the portal area (P) can be found in the liver (X390).
 
The areas of liver showing positive M. fermentans incognitus- specific antigens were also retrieved from the original paraffin blocks for ultra structural examination. Microorganisms with typical mycoplasma morphology were identified in all four livers. These mycoplasma-like microorganisms could be found intracellularly in the cytoplasms of mononuclear lymphohistiocytes, Kupffer cells and hepatocytes. Many of these microorganisms also lined up extracellularly along the walls of sinusoids (FIG. 29). For comparison, an electron micrograph of M. fermentans incognitus in the liver of a silvered leaf monkey, experimentally infected with this pathogen (Example 9) is shown in the insert of FIG. 29E.
 
FIG. 29 shows an electron micrograph of AIDS liver immunostained positively for M. fermentans incognitus-specific antigens. FIG. 29A is an electron micrograph of a periportal area of an AIDS liver with adjacent necrosis. N is the nucleus of a mononuclear lymphohistiocyte. R is red blood cells in the small vessel and the bar represents 500 nm. FIG. 29B is a higher magnification of the mycoplasma-like microorganisms found in the empty extracellular space and lining along the outer surface of the lymphohistiocyte shown in 29A. Many intracellular particles (arrow heads) can also be identified and are difficult to differentiate with the extracellular particles (P is the polysomal structure and the bar represents 1200 nm). FIG. 29C is a higher magnification of the mycoplasma-like microorganisms lining the outer surface of the lymphohistiocyte (Bar represents 100 nm). FIG. 29D is an electron micrograph of another AIDS liver which showed no evidence of histopathological changes except mild portal infiltrates of chronic inflammatory cells (N is the nucleus and the bar represents 400 nm). FIG. 33E is a higher magnification of the mycoplasma-like particles shown in 29D. The insert shows M. fermentans incognitus in 2% glutaldehyde fixed liver of experimentally infected silvered leaf monkey at the same magnification (Bar represents 100 nm).
 
Lymph node and spleen
 
Two lymph nodes surgically removed from AIDS patients showed reactive changes with follicular hyperplasia and foci of sinus histiocytosis. No areas of necrosis were identified. Positive immunochemical reactions were seen primarily within the endothelial cells lining the lymphatic sinus or the mononuclear lymphohistiocytes found in the sinus. Both nuclei and cytoplasm were stained positively. The typical staining patterns were similar to the results presented previously, using polyclonal rabbit antiserum (Lo, S-C et al., Am. J. Trop. Med. Hyg. 40, 213 (1989)).
 
Sections from four of six autopsy spleens without pathological changes stained positively with M. fermentans incognitus-specific monoclonalantibody. Mononuclear histiocytes and reticular cells in periarterial regions, mononuclear, reticular cells and lymphocytes in areas of red pulps were the positive cells which often revealed varying degrees of swelling or disruption. The strongly-stained nuclei and cytoplasm resembled inclusion bodies in the immunochemical reaction. Positively stained cells could also be identified in two additional splenic tissues with areas of prominent necrosis. The positive immunochemical reaction was concentrated at periphery of the necrosis (data not shown).
 
Characteristic ultrastructures with morphological features typical of mycoplasma were identified in all four spleens (including two with necrosis) and two lymph nodes which were retrieved for electron microscopy.
 
Brain
 
More than 60% of patients with AIDS are reported to have abnormal central nervous system (CNS) symptoms (Navaia, B. A. et al., Ann. Neurol. 19, 517 (1986)). Since most AIDS patients have serological evidence of HIV infection, the CNS diseases in these patients with AIDS have been called HIV encephalopathy.
 
Eight brains from patients with AIDS who had prominent clinical symptoms of CNS diseases without histopathological diagnosis of a specific infection in the brains at necropsy were examined. Two of these 8 brains had lesions of fulminant necrosis and karyorrhexis associated with both acute and subacute inflammations. Both of these brains were from intravenous drug abusers with AIDS. One of the other brains had subacute encephalitis with mononuclear cell infiltration but no necrosis. The remaining 5 brains showed only atrophy, gliosis and occasional microglial nodules without evidence of necrosis or inflammation.
 
All 3 brains with histopathological evidence of acute or subacute encephalitis stained positively for M. fermentans incognitus-specific antigens. FIG. 30 shows the positive immunostaining of the acute and subacute inflammatory cells in the periphery of a necrotic brain lesion.
 
FIG. 30A is a photomicrograph of the periphery of a necrotic cerebellar lesion immunostained positively by M. fermentans incognitus-specific monoclonal antibody (C42H10) (X390). FIG. 30B is a higher magnification of the periphery of the lesion in 30A and shows both acute and subacute inflammatory cells immunostained positively (X780). FIG. 30C is also a higher magnification of the positively stained cells in 30A (X780). FIG. 30D is a photomicrograph of the same periphery area of the necrotic lesion immunostained by a non-specific monoclonal antibody with the same isotype IgG1/k. Cells with prominent cytopathological changes and disruption (arrows) are evident (X780).
 
Furthermore, three of the 5 brains showing no evidence of inflammation or necrosis also revealed positive immunostaining. The positively stained cells showed degenerating changes, and often became inclusion body-like structures in the gray and white matter. The patterns and characteristics of positive immunohistochemical staining identified in these histologically unremarkable brains were comparable to those previously reported, using rabbit polyclonal antiserum (Lo, S-C et al., Am. J. Trop. Med. Hyg. 40, 213 (1989)).
 
Ultrastructural confirmation of M. fermentans incognitus infection in these 6 brains which immunostained positively for M. fermentans incognitus-specific antigens was also performed. Many electron-dense particles with features of mycoplasma organisms were identified extracellularly positively for M. fermentans incognitus-specific antigens was also performed. Many electron-dense particles with features of mycoplasma organisms were identified extracellularly or in the cytoplasm of mononuclear lymphohistiocytes located in the periphery of necrosis. Clusters of particles with morphological features of mycoplasma could also be identified in the encephalopathy AIDS brains showing positive immunostaining but with no evidence of necrosis and inflammation (FIG. 31). Some of the particles had prominent outer membranes. For comparison, the electron micrograph of M. fermentans incognitus with an apparent outer limiting membrane identified in cytoplasm of Sb51 cells in culture is shown in the insert of FIG. 31D.
 
FIG. 31A is an electron micrograph of mycoplasma-like particles (arrows) clustered together in the hippocampus. F is a bundle of neuroglialfilament and N is the nucleus of a mononuclear cell (Bar represents 100 nm). FIG. 31B is a higher magnification of the mycoplasma-like particles shown in 31A. The outer limiting membrane (small arrows) of some particles is prominent. (Bar represents 100 nm).
 
FIG. 31C is a higher magnification of the same particles. FIG. 31D is a high magnification electron micrograph of mycoplasma-like particles found in the brain stem from another AIDS patient (large photo to right). The typical particles with well-preserved outer membrane (small arrows) are shown in an endothelial cell. Cytoplasmic membrane (large arrows) of the endothelial cells and basement membrane (arrow heads) of the vessel can be identified. L is the lumen of the vessel. The insert shows an electron micrograph of VLIA (M. fermentans incognitus) originally identified in the cytoplasm of sb51 cells, at the same magnification. The unit membrane of M. fermentans incognitus (small arrows) is prominent in the well fixed (2% glutaldehyde) and well preserved culture specimen. Cytoplasmic membrane (large arrows) of the sb51 cell is also identified (Bar represents 200 nm).
 
Placentas
 
Two placentas delivered at full term by two women with AIDS were available for study. The babies were reported to be normal at birth. However, no follow-up was available.
 
Histopathological examination showed occasional infiltrate of acute inflammatory cells in the chorionic plates in one of the placentas. The second placenta was histologically unremarkable. The special histopathological stains did not reveal any pathogens in either of the two placentas. Immunohistochemical study of both placentas, using M. fermentans incognitus-specific monoclonal antibodies C42H10 and D81E7, exhibited positive immunoreaction in areas of Hofbauer cells and stomal connective tissues in the chorionic villi (FIG. 32). Some decidual cells in the stratum basalis were also stained positively.
 
FIG. 32 shows the immunohistochemistry of a placenta delivered by a patient with AIDS. FIG. 32A is a photomicrograph of placenta tissue positively immunostained by a M. fermentans incognitus-specific monoclonal antibody (C42H10). The insert shows the same placental area in a subsequent tissue section immunostained by a non-specific monoclonal antibody with the same isotype IgG1/k (X 195). FIG. 32B is a higher magnification of the positively immunostained cells shown in 32A. The cytoplasm (arrow heads) or the surface of vacuolated cells (arrows) more often reveals positive reaction. Cells showing cytopathological changes with both nuclei and cytoplasms are positively stained (curve arrows) may resemble atypical inclusion bodies (X780).
 
Electron microscopic examination of the Hofbauer cells and connective tissues in the positively stained chorionic villi revealed numerous particles characteristic of mycoplasma (FIG. 33). Some particles identified in the Hofbauer cells were probably in membrane bound vesicles.Many microorganisms, with a wide variation of size, shape and electron density, appeared to focally colonize in the stomal connective tissue (FIG. 33). A prominent halo with a clear space surrounding each of these particles was often noted. No accompanying acute inflammatory cells or other reactive process was identified. Some apparently better preserved particles exhibited recognizable outer limiting membranes. However, many of the mycoplasma-like particles did not have definite outer unit membranes; they showed only an electron dense internal matrix with a fine granular configuration.
 
FIG. 33 shows electron microscopy of an AIDS patient's placenta immunostained a positively for M. fermentans incognitus specific antigens.FIG. 33A is an electron micrograph of a Hofbauer cell containing may mycoplasma-like particles in the cytoplasm. Some particles are apparently in the membrane bound cytoplasmic vesicles (arrows). N is the nucleus and I is a cytoplasmic inclusion body (Bar represents 800 nm). FIG. 33B is a higher magnification of the mycoplasma-like particles. Both spherical electron dense particles (arrow heads) and flask shape particles (arrows) typical for mycoplasma organisms are found to colonize in the stomal connective tissue (Bar represents 1000 nm). FIG. 33D is a higher magnification of the mycoplasma-like particles shown in 33C. Typical electron dense internal matrix with fine granular configuration of these particles is shown. Occasional particles contain recognizable outer membrane (arrows) (bar represents 100 nm). FIG. 33E shows many of the particles are also those of less electron dense but with granular appearing internal matrix. These particles often have more prominent outer limiting membrane (arrows) (Bar represents 100 nm).
 
Detection of M. fermentans incognitus specific genetic material
 
M. fermentans incognitus DNA was identified in the tissues of thymus, liver and spleen from patients with AIDS as well as in the placentas delivered by two women with AIDS using the .sup.35 S labeled psb-2.2 probe. FIG. 34 shows positive labeling with grains heavily concentrated in cells of livers and spleen. Cytological and/or histological identification of the specific "types" of cells containing M. fermentans incognitus DNA, revealed that they were the Kupffer cells and hepatocytes in the liver showing minimal histopathological changes (FIG. 34A), the infiltrating lymphoid cells and histiocytes in portal tracts of another liver (FIG. 34C), and the lymphocytes in periarteriolar lymphoid sheaths (white pulp) of spleen (FIG. 34D).
 
In parallel, .sup.35 S-labeled M13 mp 19 vector DNA which did not contain M. fermentans incognitus DNA, did not elicit any positive signals in the consecutive sections from these tissues (FIG. 34B). Five tissues of spleen and liver from three patients who died of non-AIDS conditions were used as negative controls and also did not reveal any evidence of positive signals.
 
FIG. 34 shows in situ hybridization for M. fermentans incognitus nucleic acid in liver and spleen from patients with AIDS. FIG. 34A shows cells with strong labeling (arrows) are seen in an AIDS liver with no histopathological abnormally after hybridization with .sup.35 S labeled psb-2.2 DNA. Higher magnification (insert) reveals dense clusters of grains over individual hepatocytes or Kupffer cells (X240, X770). FIG. 34B is the same area of 34A in the consecutive tissue section, hybridized with .sup.35 S-labelled cloning vector DNA not containing M. fermentans incognitus DNA (X270). FIG. 34C shows lymphocytes and histiocytes with positive labeling seen in the portal tract infiltrated with mononuclear inflammatory cells in the liver of another AIDS patient (X770). FIG. 34D shows lymphocytes with strong labeling seen in the periarteriolar lymphoid sheath of the spleen. The central arteriole (Ar) is identified. The insert shows higher magnification of heavily concentrated grains over the lymphoid cells in this white pulp (X350, X770).
 
Kidney
 
Renal tissues from 203 patients who died of AIDS as defined by the Centers for Disease Control criteria were selected for study. The patients lived in various geographic locations including the continental United States (US), Puerto Rico (PR), Haiti, and Africa. The different racial backgrounds included in this study were white, black, Hispanic, and Oriental. Risk activities for AIDS were varied and included intravenous drug abuse (IVDA), homosexual contact, heterosexual contact, and history of blood transfusion. The patients had a wide range of opportunistic infectious agent including Pneumocystis carinii, Toxoplasma gondii, Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, Mycobacterium avium-intracellulare, M tuberculosis, cytomegalovirus, herpes simplex virus, and others. Of the 203 total patients comprising this study, 20 patients had renal histopathologic changes characteristic of AIDS-associated nephropathy (AAN). Group B consisted of 15 patients selected from the remaining 183 who had no significant clinical or pathologic evidence of renal disease. These patients were matched as closely as possible with Group A patients in terms of the distribution of age, gender, race, and risk activities which Sections of kidney from the autopsies of 203 patients with AIDS, as well as renal tissues from the five (Group C) controls, were examined by conventional light microscopy. Special stains, including periodic acid-Schiff, Grocott's methenamine silver, Ziehl-Neelsen, mucicarmine, Masson's trichrome, and Brown and Hopps, were obtained to evaluate glomerular and tubular morphology as well as to document the presence of various opportunistic infections. For the 20 cases of AAN, glomerular, tubular, and interstitial changes were semiquantitatively graded and recorded. Renal tissues from 15 of the 20 patients from Group A and all of the tissues from Groups B and C were evaluated using monoclonal antibodies (MABs) against M. fermentans incognitus as described above. Formalin-fixed, paraffin-embedded sections of kidney were immunochemically stained with MABs against the incognitus strain, as previously described. Specific areas of positive staining were circled (approximately 1 mm in diameter) and removed from the matched paraffin tissue blocks. Tissues were then deparaffinized and processed as described above. After embedding all tissues in epoxy resin, semi-thin sections were cut and stained with alkaline toluidine blue for histologic analysis. The thin sections of the selected blocks were stained with lead citrate and uranyl acetate and examined by electron microscopy.
 


 
MainPage
http://www.rense.com
 
 
 
This Site Served by TheHostPros