Nuclear Waste Photo-Deactivation
Creator Dies In Car Accident
Press Release
Nuclear Solutions, Inc.

MERIDIAN, Idaho--(BUSINESS WIRE)--April 8, 2002--Nuclear Solutions, Inc. (OTCBB:NSOL - news) regretfully announces the death of Dr. Paul M. Brown.
Dr. Brown was killed on April 7, 2002 in an automobile accident in Boise, Idaho. He developed the idea for the Company's patented photoremediation technology for the remediation of nuclear waste that will now be his legacy. He is survived by his wife and two children.
``Our team is saddened by this tragic loss, however, we remain fully committed to realizing the vision that Dr. Brown inspired us with. His vision holds the promise of safe and economical treatment of nuclear waste and the potential for a new generation of power reactors,'' said John Dempsey, Executive Vice President and Chief Operating Officer.
``We have assembled a management and scientific team that is competent and fully capable of implementing the technology that Dr. Brown invented as well as our newer acquisitions such as our GHR tritium removal technology,'' he concluded.
John Dempsey and Patrick Herda, co-founder and Vice President of Business Development will direct the company's activities until a new CEO is appointed by the company's board of directors. Their efforts will be supported by Dr. Qi Ao, Vice President of Research and Development and Adrian Joseph, PhD., Vice President of Special Projects.
1. The application of photonuclear physics to nuclear waste is called Photodeactivation. Photodeactivation involves the irradiation of specific radioactive isotopes to force the emission of a neutron, thereby producing an isotope of reduced atomic mass. These resultant isotopes can be characteristically either not radioactive or radioactive with a short half-life.
The fundamental mechanism works on the laboratory scale, and preliminary research suggests that this technology will also work on the industrial scale. NSOL is taking the steps necessary for commercialization of the technology. As for most of the advanced nuclear technologies developed today, computer simulation is one of the most important and necessary steps. NSOL will use and improve a series of nuclear simulation codes
*(MCNP). The new set of simulation codes will allow the NSOL research and development team to design, test, improve, and develop experiments and commercial facilities through computer modeling.
NSOL plans to capitalize on its patent and patent-pending technology by forming strategic alliances and joint ventures with well-established leaders in the nuclear industry. Continued revenue streams are expected through licensing of the technology with both upfront fees and ongoing royalties.
2. NSOL's technology, the HYPERCON(TM) ADS process, is an X-ray based photodisintegration process. The technology could be developed into new applications for remediation of nuclear waste. The proposed process would operate at a sub-critical level, and be inherently safe. Any excess heat produced by the process could also be recovered to generate electricity.
3. NSOL holds a licencefor theexclusive worldwide rights to a proprietary technology for the removal of radioactive isotopes from contaminated wastewater called GHR. Water containing ritium and deuterium is currently stored in several locations worldwide due to the expense of available methods of treatment. Severe health problems for humans and animals are linked to these contaminants and pose a worldwide environmental threat.
Several methods for the extraction of tritium from water are currently available. However these methods such as chemical, electrolytic, ion exchange, or distillation systems have high costs associated with their operation. As a result significant quantities of tritium-contaminated water are being stored rather than treated due to cost concerns. The storage of tritium-contaminated water poses a risk to the environment due to the high mobility of water after a containment failure.

Email This Article


This Site Served by TheHostPros