- Experiments for NASA space missions have shown that small
amounts of edible meat can be created in a lab. But the technology that
could grow chicken nuggets without the chicken, on a large scale, may not
be just a science fiction fantasy.
-
- In a paper in the June 29 issue of Tissue Engineering,
a team of scientists, including University of Maryland doctoral student
Jason Matheny, propose two new techniques of tissue engineering that may
one day lead to affordable production of in vitro - lab grown - meat for
human consumption. It is the first peer-reviewed discussion of the prospects
for industrial production of cultured meat.
-
- "There would be a lot of benefits from cultured
meat," says Matheny, who studies agricultural economics and public
health. "For one thing, you could control the nutrients. For example,
most meats are high in the fatty acid Omega 6, which can cause high cholesterol
and other health problems. With in vitro meat, you could replace that with
Omega 3, which is a healthy fat.
-
- "Cultured meat could also reduce the pollution that
results from raising livestock, and you wouldn't need the drugs that are
used on animals raised for meat."
-
- Prime Without the Rib
-
- The idea of culturing meat is to create an edible product
that tastes like cuts of beef, poultry, pork, lamb or fish and has the
nutrients and texture of meat.
-
- Scientists know that a single muscle cell from a cow
or chicken can be isolated and divided into thousands of new muscle cells.
Experiments with fish tissue have created small amounts of in vitro meat
in NASA experiments researching potential food products for long-term space
travel, where storage is a problem.
-
- "But that was a single experiment and was geared
toward a special situation - space travel," says Matheny. "We
need a different approach for large scale production."
-
- Matheny's team developed ideas for two techniques that
have potential for large scale meat production. One is to grow the cells
in large flat sheets on thin membranes. The sheets of meat would be grown
and stretched, then removed from the membranes and stacked on top of one
another to increase thickness.
-
- The other method would be to grow the muscle cells on
small three-dimensional beads that stretch with small changes in temperature.
The mature cells could then be harvested and turned into a processed meat,
like nuggets or hamburgers.
-
- Treadmill Meat
-
- To grow meat on a large scale, cells from several different
kinds of tissue, including muscle and fat, would be needed to give the
meat the texture to appeal to the human palate.
-
- "The challenge is getting the texture right,"
says Matheny. "We have to figure out how to 'exercise' the muscle
cells. For the right texture, you have to stretch the tissue, like a live
animal would."
-
- Where's the Beef?
-
- And, the authors agree, it might take work to convince
consumers to eat cultured muscle meat, a product not yet associated with
being produced artificially.
-
- "On the other hand, cultured meat could appeal to
people concerned about food safety, the environment, and animal welfare,
and people who want to tailor food to their individual tastes," says
Matheny. The paper even suggests that meat makers may one day sit next
to bread makers on the kitchen counter.
-
- "The benefits could be enormous," Matheny says.
"The demand for meat is increasing world wide -- China's meat demand
is doubling every ten years. Poultry consumption in India has doubled in
the last five years.
-
- "With a single cell, you could theoretically produce
the world's annual meat supply. And you could do it in a way that's better
for the environment and human health. In the long term, this is a very
feasible idea."
-
- Matheny saw so many advantages in the idea that he joined
several other scientists in starting a nonprofit, New Harvest, to advance
the technology. One of these scientists, Henk Haagsman, Professor of Meat
Science at Utrecht University, received a grant from the Dutch government
to produce cultured meat, as part of a national initiative to reduce the
environmental impact of food production.
-
- Other authors of the paper are Pieter Edelman of Wageningen
University , Netherlands ; Douglas McFarland, South Dakota State University
; and Vladimir Mironov, Medical University of South Carolina.
-
- http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1098
|